skip to main content


Search for: All records

Creators/Authors contains: "Battat, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Apache Point Lunar Laser-ranging Operation (APOLLO) has been collecting lunar range measurements for 15 yr at millimeter accuracy. The median nightly range uncertainty since 2006 is 1.7 mm. A recently added Absolute Calibration System (ACS), providing an independent assessment of APOLLO system accuracy and the capability to correct lunar range data, revealed a ∼0.4% (10 ps) systematic error in the calibration of one piece of hardware that has been present for the entire history of APOLLO. The application of ACS-based timing corrections suggests systematic errors are reduced to <1 mm, such that overall data accuracy and precision are both ∼1 mm. This paper describes the processing of APOLLO/ACS data that converts photon-by-photon range measurements into the aggregated normal points that are used for science analyses. Additionally, we present methodologies to estimate timing corrections for range data lacking contemporaneous ACS photons, including range data collected prior to installation of the ACS. We also provide access to the full 15 yr archive of APOLLO normal points (2006 April 6–2020 December 27).

     
    more » « less
  2. Abstract

    We present data from the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) covering the 15 yr span from 2006 April through the end of 2020. APOLLO measures the Earth–Moon separation by recording the round-trip travel time of photons from the Apache Point Observatory to five retro-reflector arrays on the Moon. The APOLLO data set, combined with the 50 yr archive of measurements from other lunar laser ranging (LLR) stations, can be used to probe fundamental physics such as gravity and Lorentz symmetry, as well as properties of the Moon itself. We show that range measurements performed by APOLLO since 2006 have a median nightly accuracy of 1.7 mm, which is significantly better than other LLR stations.

     
    more » « less
  3. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. 
    more » « less
  7. Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  $$\times $$ ×  6  $$\times $$ ×  6 m $$^3$$ 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. 
    more » « less